1.1. Discrete-time signals#
Discrete-time signal \(x : \mathbb{Z} \longrightarrow \mathbb{R}\) or \(\mathbb{C}\).
Notation
Use \(x[n]\) to denote a discrete-time signal, where the square brackets indicate “discrete time”, and letters \(n\), \(m\), \(k\), and \(l\) take on integer “time” values.
Continuous-time signal \(x : \mathbb{R} \longrightarrow \mathbb{R}\) or \(\mathbb{C}\).
Notation
Use \(x(t)\) to denote a continuous-time signal, where the parantheses indicate “continuous time”, and letters \(t\), and \(s\) take on real “time” values.
Simple, but important, discrete-time signals:
Unit impulse signal \(\delta[n] = \begin{cases} 1, & n=0 \\ 0, & n \neq 0 \end{cases}\)
Unit step signal \(u[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}\)
(Complex-valued) sinusoid \(Ae^{j\phi} e^{j\hat\omega n}\)
Tip
Euler’s identity implies \(A\cos(\hat\omega n + \phi) = \frac{A}{2}e^{j\phi} e^{j\hat\omega n} + \frac{A}{2}e^{-j\phi} e^{-j\hat\omega n}\).
Stepped sinusoid \(Ae^{j\phi} e^{j\hat\omega n} u[n]\)
Some important signal properties:
Periodicity:
\(x[n]\) is periodic with period \(N\) \((N > 0)\) if \(x[n] = x[n+N]\) for all \(n \in \mathbb{Z}\).
The smallest such \(N\) is called the fundamental period.
Notation
Often, we simply call the fundamental period of \(x[n]\) the period of the signal when there is no ambiguity.
If no such \(N\) exists, \(x[n]\) is aperiodic.
Signal energy: \(E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2\).
Signal power: \(P_x = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \sum_{n=-M}^{M} |x[n]|^2\).
Tip
If \(x[n]\) is periodic with period \(N\), \(P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2\).